47 research outputs found

    A method for detecting ντ\nu_\tau appearance in the spectra of quasielastic CC events

    Full text link
    A method for detecting the transition \omutau in long-baseline accelerator experiments, that consists in comparing the far-to-near ratios of the spectra of quasielastic CC events generated by high- and low-energy beams of muon neutrinos, is proposed. The test may be accessible to big water Cherenkov detectors and iron--scintillator calorimeters, and is limited by statistics rather than systematics.Comment: 10 pages, 4 figure

    Emulsion Chamber with Big Radiation Length for Detecting Neutrino Oscillations

    Get PDF
    A conceptual scheme of a hybrid-emulsion spectrometer for investigating various channels of neutrino oscillations is proposed. The design emphasizes detection of τ\tau leptons by detached vertices, reliable identification of electrons, and good spectrometry for all charged particles and photons. A distributed target is formed by layers of low-Z material, emulsion-plastic-emulsion sheets, and air gaps in which τ\tau decays are detected. The tracks of charged secondaries, including electrons, are momentum-analyzed by curvature in magnetic field using hits in successive thin layers of emulsion. The τ\tau leptons are efficiently detected in all major decay channels, including \xedec. Performance of a model spectrometer, that contains 3 tons of nuclear emulsion and 20 tons of passive material, is estimated for different experimental environments. When irradiated by the νμ\nu_\mu beam of a proton accelerator over a medium baseline of 1 \sim 1 km/GeV, the spectrometer will efficiently detect either the \omutau and \omue transitions in the mass-difference region of Δm21\Delta m^2 \sim 1 eV2^2, as suggested by the results of LSND. When exposed to the neutrino beam of a muon storage ring over a long baseline of \sim 10-20 km/GeV, the model detector will efficiently probe the entire pattern of neutrino oscillations in the region Δm2102103\Delta m^2 \sim 10^{-2}-10^{-3} eV2^2, as suggested by the data on atmospheric neutrinos.Comment: 34 pages, 8 figure

    Measurement of the Ds lifetime

    Get PDF
    We report precise measurement of the Ds meson lifetime. The data were taken by the SELEX experiment (E781) spectrometer using 600 GeV/c Sigma-, pi- and p beams. The measurement has been done using 918 reconstructed Ds. The lifetime of the Ds is measured to be 472.5 +- 17.2 +- 6.6 fs, using K*(892)0K+- and phi pi+- decay modes. The lifetime ratio of Ds to D0 is 1.145+-0.049.Comment: 5 pages, 2 figures submitted to Phys. Lett.

    Confirmation of the Double Charm Baryon Xi_cc+ via its Decay to p D+ K-

    Get PDF
    We observes a signal for the double charm baryon Xi_cc+ in the charged decay mode Xi_cc+ -> p D+ K- to complement the previously reported decay Xi_cc+ -> Lambda_c K- pi+ in data from SELEX, the charm hadro-production experiment (E781) at Fermilab. In this new decay mode we observe an excess of 5.62 events over an expected background estimated by event mixing to be 1.38+/-0.13 events. The Poisson probability that a background fluctuation can produce the apparent signal is less than 6.4E-4. The observed mass of this state is (3518+/-3)MeV/c^2, consistent with the published result. Averaging the two results gives a mass of (3518.7+/-1.7)MeV/c^2. The observation of this new weak decay mode confirms the previous SELEX suggestion that this state is a double charm baryon. The relative branching ratio Gamma(Xi_cc+ -> pD+K-)/Gamma(Xi_cc+ -> Lambda_c K- pi+) = 0.36+/-0.21.Comment: 11 pages, 6 included eps figures. v2 includes improved statistical method to determine significance of observation. Submitted to PL

    Hadronic Production of Lambda_c from 600 GeV/c pion, sigma and proton beams

    Full text link
    We present data from Fermilab experiment E781 (SELEX) on the hadroproduction asymmetry for anti-Lambda_c compared to Lambda_c+ as a function of xF and pt2 distributions for Lambda_c+. These data were measured in the same apparatus using incident pi-, sigma- beams at 600 GeV/c and proton beam at 540 GeV/c. The asymmetry is studied as a function of xF. In the forward hemisphere with xF >= 0.2 both baryon beams exhibit very strong preference for producing charm baryons rather than charm antibaryons, while the pion beam asymmetry is much smaller. In this energy regime the results show that beam fragments play a major role in the kinematics of Lambda_c formation, as suggested by the leading quark picture.Comment: 6 pages, 5 figures (postscript), RevTeX, submitted to Phy. Rev. Let

    First Observation of the Cabibbo-suppressed Decays Xi_c+ -> Sigma+ pi- pi+ and Xi_c+ -> Sigma- pi+ pi+ and Measurement of their Branching Ratios

    Get PDF
    We report the first observation of two Cabibbo-suppressed decay modes, Xi_c+ -> Sigma+ pi- pi+ and Xi_c+ -> Sigma- pi+ pi+. We observe 59+/-14 over a background of 87, and 22+/-8 over a background of 13 events, respectively, for the signals. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600GeV/c Sigma- beam. The branching ratios of the decays relative to the Cabibbo--favored Xi_c+ -> Xi- pi+ pi+ are measured to be B(Xi_c+ -> Sigma+ pi- pi+)/B(Xi_c+ -> Xi- pi+ pi+) = 0.48+/-0.20, and B(Xi_c+ -> Sigma- pi+ pi+)/B(Xi_c+ -> Xi- pi+ pi+) = 0.18+/-0.09, respectively. We also report branching ratios for the same decay modes of the Lambda_c+ relative to Lambda_c+ -> p K- pi+.Comment: 15 pages, 5 figures, version 2 as accepted in PL

    Total Cross Section Measurements With π- , Σ- And Protons On Nuclei And Nucleons Around 600 Gev/c

    Get PDF
    Total cross sections for Σ- and π- on beryllium, carbon, polyethylene and copper as well as total cross sections for protons on beryllium and carbon have been measured in a broad momentum range around 600GeV/c . These measurements were performed with a transmission technique in the SELEX hyperon-beam experiment at Fermilab. We report on results obtained for hadron-nucleus cross sections and on results for σtot(Σ-N) and σtot(π-N) , which were deduced from nuclear cross sections. © 2000 Elsevier Science B.V.57901/02/15277312Langland, J.L., (1995) Ph.D. Thesis, , University of IowaKleinfelder, S.A., (1988) IEEE Trans. Nucl. Sci., 35 (1)Dersch, U., (1998) Ph.D. Thesis, HeidelbergBiagi, S.F., (1981) Nucl. Phys. B, 186, pp. 1-21Bellettini, G., (1966) Nucl. Phys., 79, pp. 609-624Schiz, A.M., (1980) Phys. Rev. D, 21, pp. 3010-3022Murthy, P.V.R., (1975) Nucl. Phys. B, 92, pp. 269-308Caso, C., (1998) Eur. Phys. J. C, 3. , http://pdg.lbl.gov/1998/contents_plots.html, and data on total cross sections from computer readable filesSchiz, A.M., (1979) Ph.D. Thesis, , Yale University(1973) Landolt Börnstein Tables, 7. , Springer editionEngler, J., (1970) Phys. Lett. B, 32, pp. 716-719Babaev, A., (1974) Phys. Lett. B, 51, pp. 501-504Glauber, R.J., (1959) Boulder Lectures, pp. 315-413Franco, V., (1972) Phys. Rev. C, 6, pp. 748-757Karmanov, V.A., Kondratyuk, L.A., (1973) JETP Lett., 18, pp. 266-268Burq, J.P., (1983) Nucl. Phys. B, 217, pp. 285-335Gross, D., (1978) Phys. Rev. Lett., 41, pp. 217-220Beznogikh, G.G., (1972) Phys. Lett. B, 39, pp. 411-413Vorobyov, A.A., (1972) Phys. Lett. B, 41, pp. 639-641Foley, K.J., (1967) Phys. Rev. Lett., 19, pp. 857-859Fajardo, L.A., (1981) Phys. Rev. D, 24, pp. 46-65Jenni, P., (1977) Nucl. Phys. B, 129, pp. 232-252Breedon, R.E., (1989) Phys. Rev. Lett. B, 216, pp. 459-465Amos, N., (1983) Phys. Rev. Lett. B, 128, pp. 343-348Amaldi, U., (1977) Phys. Rev. Lett. B, 66, pp. 390-394Amos, N., (1985) Nucl. Phys. B, 262, pp. 689-714Akopin, V.D., (1977) Sov. J. Nucl. Phys., 25, pp. 51-55Amirkhanov, I.V., (1973) Sov. J. Nucl. Phys., 17, pp. 636-637Foley, K.J., (1969) Phys. Rev., 181, pp. 1775-1793Apokin, V.D., (1976) Nucl. Phys. B, 106, pp. 413-429Burq, J.P., (1982) Phys. Lett. B, 109, pp. 124-127Dakhno, L.G., (1983) Sov. J. Nucl. Phys., 37, pp. 590-598Kazarinov, M., (1976) Sov. Phys. JETP, 43, pp. 598-606De Jager, C.W., (1974) At. Data Nucl. Data Tables, 14, pp. 479-508Donnachie, A., Landshoff, P.V., (1992) Phys. Lett. B, 296, pp. 227-232Lipkin, H., (1975) Phys. Rev. D, 11, pp. 1827-1831Barnett, R.M., (1996) Phys. Rev. D, 54, pp. 191-192Carroll, A.S., (1979) Phys. Lett. B, 80, pp. 423-427Badier, J., (1972) Phys. Lett. B, 41, pp. 387-39

    Total Cross Section Measurements with pi-, Sigma- and Protons on Nuclei and Nucleons around 600 GeV/c

    Full text link
    Total cross sections for Sigma- and pi- on beryllium, carbon, polyethylene and copper as well as total cross sections for protons on beryllium and carbon have been measured in a broad momentum range around 600GeV/c. These measurements were performed with a transmission technique adapted to the SELEX hyperon-beam experiment at Fermilab. We report on results obtained for hadron-nucleus cross sections and on results for sigma_tot(Sigma- N) and sigma_tot(pi- N), which were deduced from nuclear cross sections.Comment: 42 pages, submitted to Nucl.Phys.

    Nuclear Dependence Of Charm Production

    Get PDF
    Using data taken by SELEX during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with ∑ -, p, π -, and π + beams. Parametrizing the dependence of the inclusive production cross section on the atomic number A as A α, we determine α for D +, D 0, D s +, D +(2010), Λ c +, and their respective anti-particles, as a function of their transverse momentum p t and scaled longitudinal momentum x F . Within our statistics there is no dependence of α on x F for any charm species for the interval 0.1<x F <1.0. The average value of α for charm production by pion beams is α meson=0.850±0.028. This is somewhat larger than the corresponding average α baryon=0.755±0.016 for charm production by baryon beams (∑ -, p). © 2009 Springer-Verlag/Società Italiana di Fisica.644637644Cobbaert, H., (1987) Phys. Lett. B, 191, p. 456. , 10.1016/0370-2693(87)90639-3 1987PhLB.191.456CCobbaert, H., (1988) Phys. Lett. B, 206, p. 546. , 10.1016/0370-2693(88)91627-9Cobbaert, H., (1988) Phys. Lett. B, 213, p. 395. , 10.1016/0370-2693(88)91783-2 1988PhLB.213.395CLeitch, M.J., (2000) Phys. Rev. Lett., 84, p. 3256. , 10.1103/PhysRevLett.84.3256 2000PhRvL.84.3256L arXiv:nucl-ex/9909007Alessandro, B., Alexa, C., Arnaldi, R., Atayan, M., Baglin, C., Baldit, A., Beole, S., Willis, N., Charmonium production and nuclear absorption in p-A interactions at 450 GeV (2004) European Physical Journal C, 33 (1), pp. 31-40. , DOI 10.1140/epjc/s2003-01539-yAbt, I., (2009) Eur. Phys. J. C, 60, p. 525. , 10.1140/epjc/s10052-009-0965-7 2009EPJC.60.525A arXiv:0812.0734 [hep-ex]Heller, K.J., (1977) Phys. Rev. D, 16, p. 2737. , 10.1103/PhysRevD.16.2737 1977PhRvD.16.2737HSkubic, P., (1978) Phys. Rev. D, 18, p. 3115. , 10.1103/PhysRevD.18.3115 1978PhRvD.18.3115SAleev, A.N., (1987) Sov. J. Nucl. Phys., 46, p. 657. , [Yad. Fiz. 46, 1127 (1987)]Vecko, M., (1989) Czech. J. Phys. B, 39, p. 297. , 10.1007/BF01597781 1989CzJPh.39.297VAdamovich, M., (1992) Phys. Lett. B, 284, p. 453. , 10.1016/0370-2693(92)90460-L 1992PhLB.284.453AAlves, G.A., (1993) Phys. Rev. Lett., 70, p. 722. , 10.1103/PhysRevLett.70.722 1993PhRvL.70.722AAlves, G.A., (1994) Phys. Rev. D, 49, p. 4317. , 10.1103/PhysRevD.49.R4317 1994PhRvD.49.4317ALeitch, M.J., (1994) Phys. Rev. Lett., 72, p. 2542. , 10.1103/PhysRevLett.72.2542 1994PhRvL.72.2542LAdamovich, M., (1997) Nucl. Phys. B, 495, p. 3. , 10.1016/S0550-3213(97)00223-X 1997NuPhB.495.3AApanasevich, L., (1997) Phys. Rev. D, 56, p. 1391. , 10.1103/PhysRevD.56.1391 1997PhRvD.56.1391A arXiv:hep-ex/9702014Abt, I., (2007) Eur. Phys. J. C, 52, p. 531. , 10.1140/epjc/s10052-007-0427-z 2007EPJC.52.531A arXiv:0708.1443 [hep-ex]Duffy, M.E., (1985) Phys. Rev. Lett., 55, p. 1816. , 10.1103/PhysRevLett.55.1816 1985PhRvL.55.1816DVogt, R., The A dependence of open charm and bottom production (2003) International Journal of Modern Physics E, 12 (2), pp. 211-269. , DOI 10.1142/S0218301303001272Lourenco, C., Wohri, H.K., Heavy-flavour hadro-production from fixed-target to collider energies (2006) Physics Reports, 433 (3), pp. 127-180. , DOI 10.1016/j.physrep.2006.05.005, PII S0370157306001815Frawley, A.D., Ullrich, T., Vogt, R., (2008) Phys. Rept., 462, p. 125. , 10.1016/j.physrep.2008.04.002 2008PhR.462.125F arXiv:0806.1013 [nucl-ex]Russ, J.S., (1998) Proceedings of the 29th International Conference on High Energy Physics II World Scientific Singapore, 1259. , A. Astbury (eds), et al. arXiv:hep-ex/9812031Russ, J.S., (1998) Proceedings of the 29th International Conference on High Energy Physics, 2, p. 1259. , ed. by A. Astbury, et al. (World Scientific, Singapore) arXiv:hep-ex/9812031Engelfried, J., (1999) Nucl. Instrum. Methods A, 431, p. 53. , 10.1016/S0168-9002(99)00043-1 1999NIMPA.431.53E arXiv:hep-ex/9811001Kushnirenko, A., Alkhazov, G., Atamantchouk, A.G., Balatz, M.Y., Bondar, N.F., Cooper, P.S., Dauwe, L.J., Vishnyakov, V.E., Precision measurements of the ∧c+ and D 0 lifetimes (2001) Physical Review Letters, 86 (23), pp. 5243-5246. , DOI 10.1103/PhysRevLett.86.5243Garcia, F.G., (2002) Phys. Lett. B, 528, p. 49. , 10.1016/S0370-2693(01)01484-8 2002PhLB.528.49S arXiv:hep-ex/0109017Kaya, M., (2003) Phys. Lett. B, 558, p. 34. , 10.1016/S0370-2693(03)00246-6 2003PhLB.558.34S arXiv:hep-ex/0302039Brodsky, S.J., Kopeliovich, B., Schmidt, I., Soffer, J., (2006) Phys. Rev. D, 73, p. 113005. , 2006PhRvD.73k3005B arXiv:hep-ph/0603238Adamovich, M.I., (2003) Eur. Phys. J. C, 26, p. 357. , 10.1140/epjc/s2002-01073-6 2003EPJC.26.357WA. Blanco-Covarrubias, et al. (SELEX Collaboration), in preparatio
    corecore